ABSTRACT: The implementation of a low power logic based asynchronous circuit with the help of power gated logic. In asynchronous power gated logic (APL) circuit, each pipeline stage was incorporated with efficient charge recovery logic (ECRL) gate; handshake controller and partial charge reuse (PCR) mechanism. The main objective was, to provide a new lower power solutions using power gating (PG) for very large scale integration (VLSI) designers. ECRL have the simplest structure and high energy efficiency which was used to implement the functional blocks of APL circuit. PG adopts two approaches, fine grain and coarse grain approach. The circuit based asynchronous with fine grain approach is called asynchronous fine grain power gated logic (AFPL) circuit and coarse grain approach is said to be asynchronous coarse grain power gated logic (ACPL) circuit. In the PCR mechanism, part of the charge on the output node of an ECRL gate was reused to charge the output node of another ECRL gate. This help to reducing the energy dissipation. Therefore, leakage power reduction should begin with power gated logic and PCR mechanism. To mitigate the area overhead of the AFPL circuit, coarse grain power gating technique have been developed.

INTRODUCTION:
As memory capacity and chip size are continuously increasing, it has become clear that optimizing of efficient, low power computing devices is a critical issue. Power dissipation has evolved into an optimization objective due to the growing demand for portable devices as well as due to excessive heat generation in the high speed performance systems. The power dissipation can be broken down into two main categories such as dynamic power and static power dissipation. Power dissipation has become a critical parameter in nano scale CMOS VLSI design [6]. Dynamic power is dissipated by active parts and static power is dissipated by the inactive parts of the circuits. Dynamic power dissipation is caused by switching activities in CMOS circuits due to charging and discharging of capacitance. Dynamic power dissipation also caused by signal switching to the logic gates of the circuits rather than switching activities [3]. The leakage current is the main source of standby power dissipation. The major sources of leakage current include reverse biased PN junction current and sub threshold channel condition current. As the feature size shrinks, static power can constitute the total power consumption. There are various techniques for reducing static power dissipation in CMOS circuits. These techniques include gate sizing, clocking gating, power gating, transistor stacking [2], dual threshold CMOS [5], etc. Power gating is one of the most effective techniques for standby leakage reduction method [11], [12]. Power gating can be implemented in both synchronous circuits as well as asynchronous circuits.

Power gating techniques:
- Power-up (inrush power): Inrush power is the amount of power drawn by the device during power-up.
- Configuration power: Configuration power is the amount of power required during the loading of the FPGA upon power-up (specific to SRAM-based programmable logic devices).
- Static (standby) power: Static power is the amount of power the device consumes when it is powered-up but not actively performing any operation. Dynamic (active) power: Dynamic power is the amount of power the device consumes when it is actively operating.
- Sleep power (low-power mode): Some FPGA devices offer low-power or sleep modes. In some cases, this may be different from static power. This application note focuses on reducing the dynamic power. In general, the dynamic power is calculated using the formula shown in EQ 1: $P = \frac{V}{F}$ Where is the switching activity, C is the capacitive load, V is the supply voltage, and F is the frequency. In flash FPGAs,
the components that consume dynamic power are clock networks, logic blocks, routing resources (nets), I/Os, memory, PLLs, etc. These components have different \(D, \) \(C, \) \(V, \) and \(F \) values. For example, the dynamic power of a net depends on the average switching \((D) \), the total capacitive loading of the net \((C) \), the net's voltage swing \((V) \), and the frequency \((F) \). In FPGA design, the clock gating and power gating is important work. To implement clock gating, circulation is employed. The idea of circulation is to retain the contents of the flip-flop in the sleep state. Circulation can reduce the dynamic power consumption of registers and the gates in the fan-out of the registers. However, the standby power consumption of the clock network cannot be reduced. The standby power is a serious problem because it has an enormously large number of transistors to achieve its programmability. Low-cost FPGAs consume up to hundreds of milliwatts power. Power gating has emerged as the most effective design technique to achieve low standby power. Power gating techniques are based on selectively setting the functional units into a low leakage mode when they are inactive.

FPGA (Field Programmable Gate Array):
Field Programmable Gate Arrays are two dimensional array of logic blocks and flip-flops with a electrically programmable interconnections between logic blocks. The interconnections consist of electrically programmable switches which is why FPGA differs from Custom ICs, as Custom IC is programmed using integrated circuit fabrication technology to form metal interconnections between logic blocks.

In an FPGA logic blocks are implemented using multiple level low fanin gates, which gives it a more compact design compared to an implementation with two-level AND-OR logic. FPGA provides its user a way to configure:
1. The intersection between the logic blocks and
2. The function of each logic block.

Logic block of an FPGA can be configured in such a way that it can provide functionality as simple as that of transistor or as complex as that of a microprocessor. It can used to implement different combinations of combinational and sequential logic functions. Logic blocks of an FPGA can be implemented by any of the following:
1. Transistor pairs
2. combinational gates like basic NAND gates or XOR gates
3. n-input Lookup tables
4. Multiplexers
5. Wide fan-in And-OR structure.

Routing in FPGAs consists of wire segments of varying lengths which can be interconnected via electrically programmable switches. Density of logic block used in an FPGA depends on length and number of wire segments used for routing. Number of segments used for interconnection typically is a tradeoff between density of logic blocks used and amount of area used up for routing.

The ability to reconfigure functionality to be implemented on a chip gives a unique advantage to designer who designs his system on an FPGA. It reduces the time to market and significantly reduces the cost of production.

![Fig1: FPGA architecture](image)

Asynchronous Architecture Design:
The asynchronous architecture it detects the activity of a power gated domain. The activities are:

1) To determine when logic block is standby state, when sleep state & when active state.

2) It compares the phase of the input data and output data

3) It determines the function of lookup table. Dynamic power reducing purpose introduce dual rail encoding (existing)[2] and level encoding dual rail (proposed) architecture. Standby power reducing purpose introduced autonomous fine grain power gating technique. The registers store the data value and produce the output to switch block. Sleep controller monitor wake up the successive block when it gets data. The switch block consists of pass transistor switches. In a switch block, a wire-set consists of four wires: two for data lines (Vout and Rout), one for the acknowledge signal and one for the wake-up signal. A pass-switch block consists of
four pass switches and a single memory bit. This FPGA architecture logic block can be connected to the switch block. In the switch block there are four signals 1) data signal (first bit) 2) data signal (second bit) 3) acknowledgement signal 4) data arrival signal. The above four signal The circuit can be implemented by using below the architectures. The logic block can be connected to the switch block. Each switch block connected to the other switch block. This logic block and switch block described below the architecture diagrams. No need to include external clocks or oscillations.

AUTONOMOUS FINE GRAIN POWER GATING:

This architecture operation based on data's and phase signal. The D latch signal given to selectors and selectors produce the output of level encoding signal. In LEDR encoding, no spacer is required. Table 1 shows the code table of LEDR encoding. In LEDR encoding, each data value has two types of code words with different phases. Above example shows the data values "0","0," and " 1" are transferred.

RESULTS:

ACKNOWLEDGMENT:

In this paper, we presented a low-power asynchronous FPGA architecture which adopts several novel techniques to reduce power consumption. Design of Level encoding Dual Rail technique can effectively eliminate the excessive data transition without increasing loading on the global clock signal. The implementation of the autonomous fine-grain power gating has been done efficiently using the standby state to wake up the Logic block before the data arrives and power OFF the Logic block only when the data does not come for quite a while.

REFERENCES: