Anonymous Authentication of Data Stored in Clouds with Decentralized Security Mechanism

Chaparala Pushya, G Syam Prasad

Abstract


The term that flourished in the IT industry is the Cloud Computing.  Inspired and Motivated by the tremendous growth and the huge success of cloud, we propose a new decentralized access control scheme for secure data storage in clouds that supports anonymous authentication. In the proposed scheme, the cloud verifies the authenticity of the series without knowing the user’s identity before storing data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user revocation. Moreover, our authentication and access control scheme is decentralized and robust, unlike other access control schemes designed for clouds which are centralized. The communication, computation, and storage overheads are comparable to centralized approaches.


References


S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy Preserving Access

Control with Authentication for Securing Data in Clouds,” Proc. IEEE/ACM Int’l Symp. Cluster, Cloud and Grid Computing, pp. 556- 563, 2012.

C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward Secure and Dependable Storage Services in Cloud Computing,” IEEE Trans. Services Computing, vol. 5, no. 2, pp. 220-232, Apr.- June 2012.

J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy Keyword Search Over Encrypted Data in Cloud Computing,” Proc. IEEE INFOCOM, pp. 441-445, 2010.

S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” Proc. 14th Int’l Conf. Financial Cryptography and Data Security, pp. 136- 149, 2010.

H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-Based Authentication for Cloud Computing,” Proc. First Int’l Conf. Cloud Computing (CloudCom), pp. 157-166, 2009.

C. Gentry, “A Fully Homomorphic Encryption Scheme,” PhD dissertation, Stanford Univ., http://www.crypto.stanford.edu/ craig, 2009.

A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-Based Cloud Computing,” Proc. Third Int’l Conf. Trust and Trustworthy Computing (TRUST), pp. 417-429, 2010.

R.K.L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang, and B.S. Lee, “Trustcloud: A Framework for Accountability and Trust in Cloud Computing,” HP Technical Report HPL-2011-38, http://www.hpl.hp.com/techreports/ 2011/HPL-2011-38.html, 2013.

R. Lu, X. Lin, X. Liang, and X. Shen, “Secure Provenance: The Essential of Bread and Butter of Data Forensics in Cloud Computing,” Proc. Fifth ACM Symp. Information, Computer and Comm. Security (ASIACCS), pp. 282-292, 2010.

D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access Controls,” Proc. 15th Nat’l Computer Security Conf., 1992.

D.R. Kuhn, E.J. Coyne, and T.R. Weil, “Adding Attributes to Role-Based Access Control,” IEEE Computer, vol. 43, no. 6, pp. 79-81, June 2010.

M. Li, S. Yu, K. Ren, and W. Lou, “Securing Personal Health Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-Owner Settings,” Proc. Sixth Int’l ICST Conf. Security and Privacy in Comm. Networks (SecureComm), pp. 89-106, 2010.


Full Text: PDF [Full Text]

Refbacks

  • There are currently no refbacks.


Copyright © 2013, All rights reserved.| ijseat.com

Creative Commons License
International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.