A High Step Up Converter With A Voltage Multiplier Module For A Pv System

Suman Lakshmi Phani Madduri, Y.Raja Babu

Abstract


A novel high step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system, is proposed in this paper. A new voltage multiplier module composed which is having switched capacitors and coupled inductors, with its combination a conventional interleaved boost converter obtains high step-up gain without operating at extreme duty ratio is designed. This proposed converter reduces the current stress and also reduces constrains the input current ripple, which decreases the conduction losses and lengthens the lifetime of the input source. Hence, large voltage spikes across the main switches are reduced, and hence the efficiency will be improved. Even the low voltage stress makes the low-voltage-rated MOSFETs be adopted for reductions of conduction losses and cost. The proposed circuit designed with 40-V input voltage, 380-V output, and 1000-W output power in the MATLAB/SIMULINK software, and is operated to verify its performance. The highest efficiency is 97.1%.


Keywords


Boost–flyback converter, high step-up, photovoltaic (PV) system, voltage multiplier module

References


J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: Operation and modeling,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2752–2758, Jul. 2008.

T. Kefalas and A. Kladas, “Analysis of transformers working under heavily saturated conditions in grid-connected renewable energy systems,” IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2342–2350, May 2012.

Y. Xiong, X. Cheng, Z. J. Shen, C. Mi, H. Wu, and V. K. Garg, “Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2268–2276, Jun. 2008.

A. K. Rathore, A. K. S. Bhat, and R. Oruganti, “Analysis, design and experimental results of wide range ZVS active-clamped L–L type currentfed DC/DC converter for fuel cells to utility interface,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 473–485, Jan. 2012.

T. Zhou and B. Francois, “Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 95–104, Jan. 2011.

N. Denniston, A. M. Massoud, S. Ahmed, and P. N. Enjeti, “Multiplemodule high-gain high-voltage DC–DC transformers for offshore wind energy systems,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1877–1886, May 2011.

H. Tao, J. L. Duarte, andM. A.M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012–3021, Aug. 2008.

K. Jin, X. Ruan, M. Yan, and M. Xu, “A hybrid fuel cell system,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1212–1222, Apr. 2009.

A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded DC–DC converter photovoltaic systems: Power optimization issues,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403–411, Feb. 2011.

R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 240–250, Jan. 2008.

R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 3, pp. 953–964, Apr. 2008.

L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1548–1556, May 2009.

B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a gridconnected photovoltaic power system,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 992–1000, Apr. 2010.

W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.

C. T. Pan and C. M. Lai, “A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1998–2006, Jun. 2010.

R. J.Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.

S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC–DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007–2017, Jun. 2010.

Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high stepup DC–DC converter with coupled-inductor and switched-capacitor techniques for a sustainable energy system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3481–3490, Dec. 2011.

Y.-P. Hsieh, J.-F. Chen, T.-J. Liang, and L. S. Yang, “A novel high step-up DC–DC converter for a microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127–1136, Apr. 2011.

C. Evangelista, P. Puleston, F. Valenciaga, and L.M. Fridman, “Lyapunovdesigned super-twisting sliding mode control for wind energy conversion optimization,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 538–545, Feb. 2013.

R. Li and D. Xu, “Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1619–1629, Apr. 2013.

L. Barote, C. Marinescu, and M. N. Cirstea, “Control structure for singlephase stand-alone wind-based energy sources,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 764–772, Feb. 2013.

Z. Song, C. Xia, and T. Liu, “Predictive current control of three-phase grid-connected converters with constant switching frequency for wind energy systems,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2451– 2464, Jun. 2013.

S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A safety enhanced, high step-up DC–DC converter for AC photovoltaic module application,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1809–1817, Apr. 2012.

Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC–DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.

K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 151, no. 2, pp. 182–190, Mar. 2004.

T. J. Liang and K. C. Tseng, “Analysis of integrated boost–flyback stepup converter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 2, pp. 217–225, Mar. 2005.

F. L. Luo, “Six self-lift DC–DC converters, voltage lift technique,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268–1272, Dec. 2001.

L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC–DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.

R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency DC–DC converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electron., vol.


Full Text: PDF [FULL TEXT]

Refbacks

  • There are currently no refbacks.


Copyright © 2013, All rights reserved.| ijseat.com

Creative Commons License
International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.