A Neural Learning Strategy to implement Semantically Categorize Short Texts

Nalluri. Srikanth, K. Hareesh Kumar

Abstract


In OSNs, data sifting can likewise be utilized for a not at all like, more mindful, standard. This is fitting to the announcement that in OSNs there is the room of redistribution or notice different posts on exacting open/private ranges, brought when all is said in done dividers. Data separating can thus be utilized to give clients the office to over and over control the messages composed all alone dividers, by sifting through undesirable messages. We consider this is a key OSN administration that has not been available as such. We propose a plan consent to OSN clients to have a straight control on the messages position on their dividers. This is accomplish through a supple standard based framework, that permits clients to alter the separating unequivocal variable to be down to earth to their dividers, and a Machine Learning-based delicate classifier naturally marking messages in hold up of substance based sifting.


References


A. Adomavicius and G. Tuzhilin, “Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 6, pp. 734-749, June 2005.

M. Chau and H. Chen, “A Machine Learning Approach to Web Page Filtering Using Content and Structure Analysis,” Decision Support Systems, vol. 44, no. 2, pp. 482-494, 2008.

R.J. Mooney and L. Roy, “Content-Based Book Recommending Using Learning for Text Categorization,” Proc. Fifth ACM Conf. Digital Libraries, pp. 195-204, 2000.

F. Sebastiani, “Machine Learning in Automated Text Categorization,” ACM Computing Surveys, vol. 34, no. 1, pp. 1-47, 2002. [5] M. Vanetti, E. Binaghi, B. Carminati, M. Carullo, and E. Ferrari,

“Content-Based Filtering in On-Line Social Networks,” Proc. ECML/PKDD Workshop Privacy and Security Issues in Data Mining and Machine Learning (PSDML ’10), 2010.

N.J. Belkin and W.B. Croft, “Information Filtering and Information Retrieval: Two Sides of the Same Coin?” Comm. ACM, vol. 35, no. 12, pp. 29-38, 1992.

P.J. Denning, “Electronic Junk,” Comm. ACM, vol. 25, no. 3, pp. 163-165, 1982.

P.W. Foltz and S.T. Dumais, “Personalized Information Delivery: An Analysis of Information Filtering Methods,” Comm. ACM,vol. 35, no. 12, pp. 51-60, 1992.

P.S. Jacobs and L.F. Rau, “Scisor: Extracting Information from On- Line News,” Comm. ACM, vol. 33, no. 11, pp. 88-97, 1990. [10] S. Pollock, “A Rule-Based Message Filtering System,” ACM Trans. Office Information Systems, vol. 6, no. 3, pp. 232-254, 1988.

P.E. Baclace, “Competitive Agents for Information Filtering,” Comm. ACM, vol. 35, no. 12, p. 50, 1992.

P.J. Hayes, P.M. Andersen, I.B. Nirenburg, and L.M. Schmandt, “Tcs: A Shell for Content-Based Text Categorization,” Proc. Sixth IEEE Conf. Artificial Intelligence Applications (CAIA ’90), pp. 320- 326, 1990.

G. Amati and F. Crestani, “Probabilistic Learning for Selective Dissemination of Information,” Information Processing and Management, vol. 35, no. 5, pp. 633-654, 1999.

M.J. Pazzani and D. Billsus, “Learning and Revising User Profiles: The Identification of Interesting Web Sites,” Machine Learning, vol. 27, no. 3, pp. 313-331, 1997.

Y. Zhang and J. Callan, “Maximum Likelihood Estimation for Filtering Thresholds,” Proc. 24th Ann. Int’l ACM SIGIR Conf. Research and Development in Information Retrieval, pp. 294-302, 2001.


Full Text: PDF [Full Text]

Refbacks

  • There are currently no refbacks.


Copyright © 2013, All rights reserved.| ijseat.com

Creative Commons License
International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.