Privacy Preservation and traceability support using Public Auditing Mechanism

Jayanthi Anusha, K Lakshmi Priya

Abstract


as future enhancement, we enhance the Oruta system in two interesting problems we will continue to study for our future work. One of them is traceability, which means the ability for the group manager (i.e., the original user) to reveal the identity of the signer based on verification metadata in some special situations. Since Oruta is based on ring signatures, where the identity of the signer is unconditionally protected, the current design of ours does not support traceability. To the best of our knowledge, designing an efficient public auditing mechanism with the capabilities of preserving identity privacy and supporting traceability is still open. Another problem for our future work is how to prove data freshness (prove the cloud possesses the latest version of shared data) while still preserving identity privacy.


Keywords


Public auditing, privacy-preserving, shared data, cloud computing

References


B. Wang, B. Li, and H. Li, “Oruta: Privacy-Preserving Public Auditing for Shared Data in the Cloud,” Proc. IEEE Fifth Int’l Conf. Cloud Computing, pp. 295-302, 2012.

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,” Comm. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69-73, 2012.

D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud Data Protection for the Masses,” Computer, vol. 45, no. 1, pp. 39-45, 2012.

C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing,” Proc. IEEE INFOCOM, pp. 525-533, 2010.

B. Wang, M. Li, S.S. Chow, and H. Li, “Computing Encrypted Cloud Data Efficiently under Multiple Keys,” Proc. IEEE Conf. Comm. and Network Security (CNS ’13), pp. 90-99, 2013.

R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public Key Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120-126, 1978.

The MD5 Message-Digest Algorithm (RFC1321). https://tools. ietf.org/html/rfc1321, 2014.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS ’07), pp. 598-610, 2007.

H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc. 14th Int’l Conf. Theory and Application of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT ’08), pp. 90-107, 2008.


Full Text: PDF [FULL TEXT]

Refbacks

  • There are currently no refbacks.


Copyright © 2013, All rights reserved.| ijseat.com

Creative Commons License
International Journal of Science Engineering and Advance Technology is licensed under a Creative Commons Attribution 3.0 Unported License.Based on a work at IJSEat , Permissions beyond the scope of this license may be available at http://creativecommons.org/licenses/by/3.0/deed.en_GB.